High School
http://mauxanhaolinh.net

Phương pháp giải BPT trong các kỳ thi dh

Go down

Phương pháp giải BPT trong các kỳ thi dh

Bài gửi  vucongtinh on 23/8/2010, 3:54 pm

BẤT PHƯƠNG TRÌNH
§1. Phương pháp sử dụng tính đơn điệu của hàm số:
Thí dụ 128: Giải bất phương trình:
Lời giải:
Đặt f(x) = VT(1), có f(x) xác định: (1)
f(x) xác định, liên tục trên (*) có: với x > -2
nên f(x) đồng biến trên (*). Do đó:
Vậy bất phương trình có nghiệm: .

Thí dụ 129: Giải bất phương trình:
Lời giải:
Đặt f(x) = VT(1), có f(x) xác định: (1)
f(x) xác định, liên tục trên (*) có: với
nên f(x) đồng biến trên (*).Do đó:
Vậy bất phương trình có nghiệm: .

Thí dụ 130: Giải bất phương trình:
Lời giải:
Đặt f(x) = VT(1), có f(x) xác định và liên tục với mọi x có:
với mọi x nên f(x) đồng biến trên (*).Do
đó
Vậy bất phương trình có nghiệm: .

Thí dụ 131: (NTA-2000) Giải bất phương trình:

Lời giải:
Đặt f(x) = VT(1),có f(x) xác định,liên tục với mọi có:
với mọi
nên f(x) đồng biến trên (*).Do đó:
Vậy bất phương trình có nghiệm: .

Thí dụ 132: (TL-2000) Giải bất phương trình:
Lời giải:

Ta có f(x) xác định khi và chỉ khi
f(x) xác định, liên tục trên (*) có: với nên f(x) đồng biến
trên (*). Do đó:
Vậy bất phương trình có nghiệm: .

Thí dụ 133: Giải bất phương trình:
Lời giải:
Ta có: )
Đặt f(x) = VT(2), có f(x) xác định, liên tục với mọi có:
nên f(x) nghịch biến trên R, do đó (
Vậy bất phương trình có nghiệm: .

Thí dụ 134: Giải bất phương trình:
Lời giải:
Ta có:
Đặt f(x) = VT(2), có f(x) xác định khi và chỉ khi:

f(x) xác định, liên tục trên (*) có: với
nên f(x) đồng biến trên (*).Do đó
Kết hợp với (*) ta được: .
Vậy bất phương trình có nghiệm: .

§2: Phương pháp phân khoảng tập xác định:
Thí dụ 135: Giải hệ thức

Lời giải:
Điều kiện:
- Với x = 3 bất phương trình trở thành bất đẳng thức
(sai)
- Với x = 4 bất phương trình trở thành
(đúng)
Vậy bất phương trình đã cho có nghiệm là x = 4.

Thí dụ 136: Giải hệ thức: log x (x + 1) = lg1,5 (1)
Lời giải:
Điều kiện: 0 < x  1
- Xét 0 < x < 1 khi đó logx(x+1) < logx1 = 0 < lg1,5. Vậy phương trình (1) không có nghiệm trong khoảng này
- Xét 1 < x < + khi đó logx(x+1) > logxx = 1 > lg1,5. Vậy phương trình (1) không có nghiệm trong khoảng này
Tóm lại (1) vô nghiệm.

Thí dụ 137: Giải hệ thức
Lời giải:
Điều kiện: . Với điều kiện đó ta có:
Kết hợp với điều kiện (*) ta được .

Thí dụ 138: Giải hệ thức
Lời giải:
(1)  (*)
Đặt y = x3 - 3x + 1 hàm số xác định liên tục trên R có y/ = 3x2 - 3; y/ = 0 khi x = 1 x = - 1 ta có bảng biến thiên:
x -1
y/ 0


y
Nghiệm của hệ: .

Thí dụ 139: Giải (1)
Lời giải:
Điều kiện:
- Với x = 1 thì (1)  (luôn đúng)
- Với x = 3 thì (1)  (loại)
Vậy bất phương trình có nghiệm là x = 1.

Thí dụ 140: Giải hệ thức (1)
Lời giải:
- Với thì x2 – 4 > 0 và x – 2 > 0. Do đó (vì hàm đồng biến)
nên VT(1) > 1 = VP(1). Bất phương trình không có nghiệm trong khoảng trên
- Với thì x2 – 4 < 0 và x – 2 < 0. Do đó (vì hàm đồng biến)
và (x2-4)3x-2 < 0 nên VT(1) < 1 = VP(1). Bất phương trình không có nghiệm trong khoảng trên
- Với x = 2 thay vào thỏa mãn.
Vậy bất phương trình có nghiệm duy nhất x = 2.

Thí dụ141: Giải bất phương trình (1)
Lời giải:
- Với x < 0 thì mà 2x-1 > 0 nên . Do đó VT(1) < 1. Vậy bất phương trình không có nghiệm trong khoảng trên
- Với x  0 thì mà 2x-1 > 0 nên . Do đó VT(1)  1
Vậy bất phương trình có nghiệm x  0.

Thí dụ 142: Giải phương trình (1)
Lời giải:
- Nếu 0 < x  1 thì khi đó VP ≤ -1; VT > -1
- Nếu x > 1 thì mà
VT = 22x-2- . Do đó: (1)  + +22x-2 (1/) Xét hàm số f(x) = 2t + log2t xác định liên tục trên R+ và:
f/(x) = t.ln2 + < 0 nên f(x) nghịch biến trên R+
(1/)  x2 – x = 2x – 2  x2 – 3x + 2 = 0  x = 1 (loại); x = 2 (thỏa mãn).
Vậy phương trình có nghiệm x = 2.

Thí dụ 143: Giải phương trình (1)
Lời giải:
Điều kiện: x + 2  0  x  – 2. Đặt f(x) = có f(x) xác định,
liên tục trên và f/(x) = 2x + 1 +
- Nếu x ≥ 0 thì f/(x) > 0 nên VT(1) là hàm đồng biến mà VP(1) = const do đó phương trình có nghiệm duy nhất x = 2
- Nếu –2 ≤ x < 0 thì VT(1) < 18 = VP(1) nên phương trình không có nghiệm trong khoảng trên .
Tóm lại phương trình có nghiệm duy nhất x = 2.

Thí dụ 144: Giải phương trình: x4 + x3 + 5 = 2 + 5 (1)
Lời giải:
Đặt f(x) = có f(x) xác định liên tục trên
f/(x) =
- Nểu x ≥ 0 thì f/(x) > 0 nên f(x) đồng biến do đó VT(1) đồng biến mà
VP(1) = const. Vì vậy x = 1 là nghiệm duy nhất của phương trình
- Nếu –1≤ x < 0 ta thấy VT(1) < 6 < VP(1).
Vậy phương trình có nghiệm duy nhất x = 1.

§3: Phương pháp hàm liên tục:
Thí dụ 145: Giải bất phương trình
Lời giải:
Đặt ; f(x) xác định khi và chỉ khi:
. Có g(x) xác định trên và
với thoả mãn nên g(x) đồng biến trên

Do f(x) liên tục trên ; 0; nên ta có bảng xét dấu f(x) trên
x


f(x)
+ – 0 + –

Từ bảng ta được (1) có nghiệm .

Thí dụ 146: Giải bất phương trình:
Lời giải:
Đặt , f(x) xác định khi và chỉ khi:
Xét phương trình . Có g(x) xác định, liên tục trên
với nên g(x) nghịch biến trên

Do f(x) liên tục trên ; ;
Nên ta có bảng xét dấu f(x) trên (*)
x

f(x) - + 0 -
Từ bảng ta được (1) có nghiệm .

Thí dụ 147: Giải bất phương trình:
Lời giải:
, f(x) xác định khi và chỉ khi



f(x) liên tục trên ; ;
Nên ta có bảng xét dấu f(x) trên
x

f(x)



Từ bảng ta được (1) có nghiệm .

Thí dụ 148: Giải bất phương trình
Lời giải:
(1)


.
Vậy (1) có nghiệm .

Thí dụ 149: Giải bất phương trình:
Lời giải:
Điều kiện: . Với điều kiện đó:





Vậy (1) có nghiệm .

Thí dụ 150: Giải bất phương trình: (1) với (*).
Lời giải:
Đặt , có f(x) xác định, liên tục trên (*) f(x) = 0



Z)
Kết hợp với ta có .
Do f(x) liên tục trên (*) và ;
Nên ta có bảng xét dấu f(x) trên
X

f(x)



Từ bảng ta đựợc (1) có nghiệm .

Thí dụ 151: Giải bất phương trình:
Lời giải:
Điều kiện: (*). Với điều kiện đó:








Kết hợp với (*) ta được (1) có nghiệm .

Thí dụ 152: Giải bất phương trình:
Lời giải:
Điều kiện: (*). Với điều kiện đó:


Kết hợp với (*) ta được (1) có nghiệm .

§4: Phương pháp mặt phẳng toạ độ:

Thí dụ 153: Tìm m để hệ: vô nghiêm (1)
Lời giải:
Đặt m = y và coi (1) là hệ 2 ẩn x; y. Ta có:
(1) 
 hoặc (2)
Trên mặt phẳng toạ độ vẽ các đường: x = 0; x = –1; y = – x; y = x
Biểu diễn nghiệm từng thành phần của (2) rồi kết hợp lại ta được miền nghiệm N của (2) là miền được gạch chéo không lấy biên trên hình vẽ


Nghiệm của (1) chính là nghiệm của (2) ứng với y = m tức là nghiệm của (1) là hoành độ của các điểm thuộc phần chung của đường thẳng y = m ( y’oy) và N.
Từ nhận xét trên và hình vẽ ta có (1) vô nghiệm khi y = m và N không có điểm chung, khi và chỉ khi m < –1 hoặc m > 1
Vậy |m| > 1 là các giá trị cần tìm để hệ (1) vô nghiệm.

Thí dụ 154: Tìm m để hệ có nghiệm duy nhất
Lời giải:
Đặt m = y và coi hệ đã cho là hệ (1) với 2 ẩn x; y ta có:
(1)
  (2)
Trên mặt phẳng toạ độ vẽ các đường: y = (x–1) ; y = x – 1; y = x
Biểu diễn nghiệm từng thành phần của (2) rồi kết hợp lại ta được miền nghiệm N của (2) là phần gạch chéo lấy cả biên trên hình vẽ



Nghiệm của (1) chính là nghiệm của (2) ứng với y = m tức là nghiệm của (1) là hoành độ của các điểm thuộc phần chung của đường thẳng y = m ( y’oy) và N. Từ nhận xét trên và từ hình vê ta thu được (1) có nghiệm  đường thẳng y = m ( y’oy) và N có điểm chung  0 ≤ m ≤
Vậy 0 ≤ m ≤ là các giá trị cần tìm để phương trình có nghiệm.

Thí dụ 155: Tìm m để hệ (1) có nghiệm duy nhất
Lời giải:
(1)
Xét 2 đường tròn (α): x + (y + 1) = m + 1 có tâm A(0; –1); R =
(β): (x + 1) + y = m + 1 có tâm B(–1; 0); R =
Hệ (1) có nghiệm duy nhất khi và chỉ khi (α) và (β) có duy nhất 1 điểm chung
 (α) và (β) tiếp xúc ngoài với nhau khi đó:
AB = 2  = 2
 = 2  m = –
Vậy giá trị cần tìm của m là m = – .

Thí dụ 156: Tìm m để hệ (1) có nghiệm
Lời giải:
Ta có: log (x + y) = 1 (2)
 0 < x + y ≤ x + y < 1 hoặc x + y ≥ x + y > 1
 hoặc (2)
Trên mặt phẳng tọa độ Oxy vẽ đồ thị của các hàm số:
∆: x + y = 0; (T ): x + y = 1; (T ): (x – ) + (y – ) =


Biểu diễn nghiệm từng thành phần rồi kết hợp lại ta được miền nghiệm N của (2) là phần gạch chéo trên hình vẽ không lấy những điểm thuộc (T ) và (∆)
Xét đường thẳng: x + 2y = m tại 2 vị trí ứng với m và m
Có đồ thị của hàm số: x + 2y = m đi qua điểm A( ;– ) m = –
Đồ thị của hàm số: x + 2y = m tiếp xúc với (T ) tại điểm thuộc góc phần tư thứ nhất m =
(1) có nghiệm  đường thẳng x + 2y = m và N có điểm chung
 – < m ≤
Vậy – < m ≤ là những giá trị cần tìm.

Thí dụ 157: Tìm m để hệ (1)
a) Có nghiệm.
b) Vô nghiệm.
Lời giải:
(1)
 
Trên mặt phẳng toạ độ Oxy vẽ đồ thị của các hàm số:
y = 1 – x (∆); (x – 1) + (y – 1) = m + 1 (α)


Ta thấy nghiệm của (2) là toàn bộ phần mặt phẳng nằm phía trên đường thẳng ∆ còn nghiệm của (3) là những điểm nằm trong và trên đường tròn α
Nên:
a) (1) có nghiệm khi và chỉ khi đồ thị hàm số của (∆) và (α) có điểm chung
 d(I; ∆) ≤ R (I(1; 1); R là tâm của (α))
 ≤ (m ≥ –1)  ≤  – ≤ m
Vậy những giá trị của m cần tìm để (1) có nghiệm là m ≥ – .
b) Nhận thấy những giá trị còn lại của m trên tập R là những giá trị làm cho (1) vô nghiệm.
Vậy những giá trị của m cần tìm để (1) vô nghiệm là m < – .

Thí dụ 158: Biện luận theo a số nghiệm của hệ:
Lời giải:
(α) v v v
Trên mặt phẳng toạ độ Oxy, biểu diễn nghiệm của (α) là hình thoi ABCD như hình vẽ:







Còn (β) 
Biểu diễn nghiệm của (β) là tập G gồm 2 đường thẳng: ∆ và ∆ . Vì ∆ cắt ∆ tại M có tọa độ (2a; a) nên M chạy trên đường thẳng ∆: x – 2y = 0
∆ đi qua điểm O(0;0) và song song với AD và BC.
Số nghiệm của hệ là số điểm chung của G với hình thoi ABCD. Trên hình thoi xét 4 điểm đặc biệt K; P; Q; N
Từ nhận xét trên và từ hình vẽ ta thu được:
Khi M nằm ngoài đoạn KN  |a| > 2 thì hệ vô nghiệm
Khi M {K; N} |a| = 2 thì hệ có 2 nghiệm phân biệt
Khi M {P; Q} |a| = 1 thì hệ có 3 nghiệm phân biệt
Khi M [KN] \ {K; P; Q; N}  |a| < 2 và |a| ≠ 1 thì hệ có 4 nghiệm phân biệt.

Thí dụ 159: Tìm a để bất phương trình sau có nghiệm âm: 3 – | x – a | > x (1)
Lời giải:
Đặt a = y và coi (1) là hệ bất phương trình 2 ẩn x; y thì (1)3 – | x – y | > x
Khi đó yều cầu bài ra tương đương với:
  (2)
Trên mặt phẳng toạ độ Oxy vẽ các đường:
x = 0; y = –x + x +3; y = x + x – 3; x = –
Biểu diễn nghiệm từng thành phần của (2) rồi kết hợp lại ta được miền nghiệm N của (2) là phần gạch chéo không lấy biên trên hình vẽ



Nghiệm của (1) chính là nghiệm của (2) ứng với y = a, tức là nghiệm x < 0 của (1) là hoành độ điểm chung của đường thẳng y = a với N
Từ các nhận xét trên và từ hình vẽ ta có: (1) có nghiệm âm  – < a < 3
Vậy – < a < 3 là các giá trị cần tìm.

Thí dụ 160: Cho phương trình (x – x – a)(2a + 2 – x) = 0 (1)
1) Biện luận theo a số nghiệm của phương trình.
2) Tìm a để mọi nghiệm của phương trình đều thuộc đoạn [0; 4].
Lời giải:
Đặt a = y và coi (1) là phương trình 2 ẩn x; y thì:
(1)  (x – x – y )(2y + 2 – x ) = 0 (2)
Trên mặt phẳng tọa độ Oxy vẽ các đường y = x; y = x – x; y = x – 1
Biểu diễn nghiệm từng thành phần của (2) rồi kết hợp lại ta được nghiệm của (2) là hoành độ các điểm thuộc đồ thị của các hàm số y = x; y = x – x; y = x – 1




Nghiệm của (1) chính là nghiệm của (2) ứng với y = a. Tức là nghiệm của (1) chính là hoành độ phần điểm chung của đường thẳng y = a với đồ thị của các hàm số y = x; y = x – x; y = x – 1
Gọi x là nghiệm của phương trình = 0 thì x = a
x là nghiệm của phương trình 2a + 2 – x = 0 thì x = 2(a + 1)
x < x là nghiệm của phương trình x – x – a = 0 thì:
x = ; x = (a ≥ – )
Từ các nhận xét trên và từ hình vẽ ta có:
Phương trình luôn có 2 nghiệm x = a; x = 2(a + 1) a R
Khi a ≥ – phương trình có thêm 2 nghiệm x = ; x =
Do đó: (γ)
  v v v
Thay vào (α) ta tìm được nghiệm của hệ đã cho là: và
2) Yêu cầu bài ra tương đương với
(4)
Trên mặt phẳng toạ độ Oxy vẽ các đường: y = x; y = x – x; y = x – 1


Biểu diễn nghiệm từng thành phần của (4) rồi kết hợp lại ta được nghiệm của (4) là phần đồ thị N (phần được tô đậm) là các hàm số y = x; y = x – x ; y = x – 1 vẽ trong đoạn [0 ; 4]. Nghiệm x [0; 4] của (1) là nghiệm của (4) với y = a tức là hoành độ điểm chung của đường thẳng y = a ( y’oy) với (N)
Từ các nhận xét trên và từ hình vẽ ta có để mọi nghiệm của (1) đều thuộc khoảng [0; 4] thì –1 ≤ a ≤ 14
Vậy –1 ≤ a ≤ 14 là các giá trị cần tìm.

Thí dụ 161: Giải và biện luận: | x – 2x +a | ≥ |2x – 3x –a | (1)
Lời giải:
Đặt a = y và coi (1) là hệ 2 ẩn x; y thì (1)| x – 2x +y | ≥ |2x – 3x –y | (2)
Do 2 vế của (2) cùng ≥ 0 nên:
(2)(x – 2x +y) ≥ (2x – 3x –y)  (3x –5x)(x –x–2y) ≤ 0
  (3)
Trên mặt phẳng toạ độ vẽ các đường: x = 0; x = ; y = (α)


Biểu diễn nghiệm từng thành phần của (3) rồi kết hợp lại ta được miền nghiệm N của (3) là phần gạch chéo lấy cả biên trên hìmh vẽ. Nghiệm của (1) là nghiệm của (2) với y = 1.
Tức là nghiệm của (1) là hoành độ phần chung của đường thẳng y = a ( y’oy) với N. Gọi x < x là hoành độ giao điểm của y = a với (α) thì x ; x là nghiệm của phương trình:
a =  x –x–2a = 0  x = và x = (a ≥ – )
Từ các nhận xét trên và từ hình vẽ ta được:
Khi a ≤ – thì (1) có nghiệm 0 ≤ x ≤
Khi – < a ≤ 0 thì (1) có nghiệm x [0; ] [ ; ]
Khi 0 < a ≤ thì (1) có nghiệm x [ ; 0] [ ; ]
Khi a > thì (1) có nghiệm x [ ; 0] [ ; ].

Thí dụ 163: Tìm p để hai bất phương trình
(x – x – p )(x + p – 1) > 0 và x – 2x – 3 ≤ 0 không có nghiệm chung
Lời giải:
Hai bất phương trình (x – x – p )(x + p – 1) > 0 và x – 2x – 3 ≤ 0 không có
nghiệm chung khi và chỉ khi hệ (1) vô nghiệm
Đặt p = y và coi (1) là hệ 2 ẩn x; y ta có:
 
 (2)
Trên mặt phẳng toạ độ vẽ các đường x = –1; x = 3; y = – x + 1; y = x – x
Biểu diễn nghiệm từng thành phần của (2) rồi kết hợp lại ta thu được miền nghiệm N của (2) là phần được gạch chéo trên hình vẽ (phần lấy biên có màu đỏ)
Nghiệm của (1) chính là nghiệm của (2) ứng với y = p tức là nghiệm của (1) là hoành độ phần chung của đường thẳng y = p ( y’oy) với N



Từ các nhận xét trên và từ hình vẽ ta có (1) vô nghiệm khi và chỉ khi đường y = p ( y’oy) không có điểm chung với N do có p ≤ – 2 hoặc p ≥ 6
Vậy p (–∞;–2] [6;+∞) là các giá trị cần tìm.
















CHƯƠNG 3: MỘT SỐ VẤN ĐỀ KHÁC
§1: Các phương pháp khác
Thí dụ 164: (Đề số 34-4-a)
Cho hàm số f(x) = x2 + bx + 1 với b . Giải bất phương trình f(f(x)) > x
Lời giải:
Ta có f(f(x)) – x =
f(f(x)) – x > 0  > 0
Đặt g(x) = x2 + (b – 1)x + 1, h(x) = x2 + (b + 1)x + b + 2;
Vì b nên > 0 và < 0. Phương trình g(x) = 0 có 2 nghiệm
Vậy bất phương trình có nghiệm x < x1 hoặc x > x2.

Thí dụ 165: (Đề số 143-4)
Giải và biện luận theo a, b phương trình x = a – b( a – bx2 )2 ( 1 )
Lời giải:
(1)  (bx2 + x – a)(b2x2 – bx – ab + 1) = 0 
- Với b = 0 thì (1) có nghiệm x = a
- Với b ≠ 0
+) Nếu ( i ) có . Khi ab ≥ phương trình có nghiệm

+) Nếu ( ii ) có .Khi ab ≥ phương trình có nghiệm

Kết luận: Nếu b = 0 thì x = a
Nếu b ≠ 0 Với > ab ≥ phương trình có nghiệm x1, x2
Với ab ≥ phương trình có nghiệm x1, x2, x3, x4 .
Với ab < phương trình vô nghiệm .

Thí dụ 166: (TN-98) Tìm m để phương trình x + 3(m-3x2)2 = m (I) có nghiệm
Lời giải:
(1)( 3x2 + x – m )( 9x2 – 3x + 1 – 3m ) = 0 
Để (I) có nghiệm thì một trong hai phương trình (1) hoặc (2) phải có nghiệm, điều đó xảy ra khi và chỉ khi
 m ≥
Vậy m ≥ là các giá trị cần tìm.
Thí dụ 167: Giải phương trình (1)
Lời giải:
Với à hàm đồng biến trên
(1)

Vậy phương trình có nghiệm x1; x2.

Thí dụ 168: Giải phương trình (1)
Lời giải:
Với f(x) = xác định với mọi x -a, có
Nên f(x) đồng biến trên tập xác định của nó, do đó:
(1)
thỏa mãn (*) khi và chỉ khi
Vậy (1) có nghiệm .

Thí dụ 169: Giải phương trình (1)
Lời giải:
(1) . Với xác định với mọi a thuộc R, có: với

Thí dụ 172: Giải phương trình + = (1)
Lời giải:
Đặt (x–1; 2); (–x–1; 3), ta có:
| |+| | ≥ | + |  + ≥
Đẳng thức xảy ra khi //  =  x = (thoả mãn (1))
Vậy nghiệm của (1) là x = .

Thí dụ 173: Giải phương trình | – | = 5 (1)
Lời giải:
Đặt A(–2;1), B(5;5), M(x;0) thì:
AB = 5AM= =
BM = = mà |AM–BM| ≤ AB (quy tắc 3 điểm)
Do đó VT(1) = | – | ≤ 5 = VP(1)
Đẳng thức xảy ra khi A; B; M thẳng hàng và C nằm ngoài đoạn AB
  
Vậy phương trình có nghiệm duy nhất x = .

Thí dụ 174: Giải phương trình:
(1)
Lời giải:
Phương trình đã cho tương đương với:

Đặt
Áp dụng bất đẳng thức

Do đó
(loại)
Vậy hệ đã cho vô nghiệm.

Thí dụ 175: Giải phươnh trình
Lời giải:
Điều kiện: . Đặt
Áp dụng BĐT thức có:

Điều đó có nghĩa là:

Ta có:
Vậy phương trình có nghiệm .

Thí dụ 176: Giải phương trình: = x + 2
Lời giải:
Điều kiện x ≥ 0 và x + x + 4x + 4 ≥ 0  x ≥ 0 (*)
Đặt (x; 2) và ( ; 1). Ta có: . ≤ | |.| |
hay x + 2 ≤ . ≤
Đẳng thức xảy ra khi //  = 2  x = 4 (thoả mãn điều kiện (*))
Vậy nghiệm của phương trình là x = 4.

Thí dụ 177: Giải phương trình:
Lời giải:
Đặt (x ; y ; z ); (1; 1; 2), có . ≤ | | | |
hay x + y +2z ≤  ≤ (Điều này là vô lí)
Vậy phương trình vô nghiệm.

Thí dụ 179: Giải phương trình (1)
Lời giải:
Đặt thì u.v = x3 + 1 và u + v = x2 + 2 nên điều kiện để (1) xác định là v  0 (Vì u luôn lơn hơn 0). Với điều kiện đó:
(1) trở thành 2(u + v) = 5  (u  0)
* Vớí () ta có:
(vô nghệm)
* Với () ta có:


Vậy phương trình có nghiệm là: .

Thí dụ 180: Giải phương trình 4sin3x = sinx + cosx (1)
Lời giải:
(1)  4sin3x – sinx – cosx = 0  sinx(2sin2x – 1) + 2sin3x – cosx = 0
 sinx(1 – 2cos2x) + 2sin3x – cosx = 0
 2sinx(sinx – cox)(sinx + cosx) + (sinx – cosx) = 0
 (sinx – cosx)(2sin2x + 2sinxcosx + 1) = 0


(vô nghiệm)
Vậy phương trình có nghiệm là .

Thí dụ 181: Giải phương trình sau

Lời giải:
Đặt thì a + b = 3x2 – 2x – 1 và (1) trở thành a3 + b3 = (a + b)3
 3ab(a + b) = 0 
Vậy phương trình có tập nghiệm là: .

Thí dụ 182: Giải hệ: (I)
Lời giải:
(I)
+) Với x = 0 thay vào (1) ta có y = 1
+) Với y = 0 thay vào (1) ta có x = 1
+) Với x + y = 0  x = – y thay vào (1) ta có –y3 + y3 = 1  0 = 1 (vô lí)
Vậy hệ có các cặp nghiệm (x; y) là (0; 1); (1; 0).

Thí dụ 183: Giải hệ
Lời giải:
Hệ bài cho tương đương với
(2)  (x – y)(2x2 + 2y2 – 5xy) = 0 
- Nếu x – y = 0  x = y thay vào (1) ta được
- Nếu 2x2 + 2y2 - 5xy = 0 (3)
+) Với y = 0 ta được x = 0 thay vào (1) thấy vô lý
+) Với y  0 chia hai vế của (3) cho y2 ta được:
Khi x = 2y thì (1)  8y3 – y3 = 7  7y3 = 7  y = 1 nên x = 2
Khi y = 2x tương tự ta được x = –1; y = –2
Vậy hệ có các cặp nghiệm (x; y) là .

Thí dụ 184: Giải hệ (I)
Lời giải:
(I) 

 
Vậy phương trình có nghiệm (x; y) = (2; 1); (–2; –1).
Thí dụ 185: (QGA-97) Giải hệ (I)
Lời giải:
Điều kiện: x, y ≠ 0. Với điều kiện đó
(I)   
  (Loại do x, y ≠ 0)
Vậy hệ có nghiệm duy nhất x = y = –2.

Thí dụ 186: (VMO-96) Giải hệ (I)
Lời giải:
Dễ thấy nếu (x; y) là nghiệm của hệ (I) thì x; y > 0
Do đó (I) 
Nhân từng vế của (1) và (2) ta được:
 21xy = (x + y)(7y – 24x)  7y2 – 38xy – 24x2 = 0
 (y – 6x)(7y + 4x) = 0  y = 6x (Do x; y > 0)
Thay y = 6x vào (1) ta được (thử lại thấy thoả mãn)
Vậy hệ có nghiệm (x; y) = ( )

Thí dụ 187: Giải biện luận theo a phương trình ax = (a – 1)x + 1 (a > 0)
Lời giải:
(1) . Nhận xét rằng:
ao – (a – 1).0 – 1 = 1 – 1 = 0; a1 – (a -– 1).1 – 1 = 0 nên (1) có ít nhất hai nghiệm phân biệt x = 0; x = 1.
Giả sử (1) có nhiều hơn hai nghiệm thì khi đó do f(x) xác định và liên tục trên R nên theo hệ quả định lí rolle ta có: f/(x) có ít nhất 2 nghiệm.
Tương tự f//(x) có ít nhất 1 nghiệm mà f/(x) = axlna – (a – 1)
f//(x) = ax(lna)2 > 0 (điều này trái với kết quả trên)
Vậy phương trình (1) có 2 nghiệm phân biệt x = 0; x = 1.

Thí dụ 188: Giải phương trình: 3x + 2x = 3x – 2
Lời giải:
Ta có: (2)  f(x) = 3x + 2x – 3x – 2 = 0. Nhận xét rằng:
3o + 2o – 3.0 – 2 = 1 + 1 – 2; 31 + 21 – 3.1 – 2 = 5 – 5 = 0 nên (2) có ít nhất hai nghiệm phân biệt x = 0; x = 1.
Giả sử (2) có nhiều hơn hai nghiệm thì khi đó do f(x) xác định; liên tục trên R nên theo hệ quả định lí rolle ta có: f/(x) có ít nhất hai nghiệm.
Tương tự f//(x) có ít nhất 1 nghiệm mà f/(x) = 3xln3 + 2xln2 – 3
f//(x) = 3x(ln3)2 + 2x(ln2)2 > 0 (điều này trái với kết quả trên)
Vậy phương trình đã cho có hai nghiệm x = 0; x = 1.

Thí dụ 189: Chứng minh rằng với nN*; n chẵn và với p; qR thì phương trình xn + px + q = 0 (3) không thể có quá hai nghiệm thực phân biệt
Lời giải:
Giả sử (3) có nhiều hơn hai nghiệm thực phân biệt. Khi đó do f(x) = xn + px + q xác định liên tục trên R nên theo hệ quả định lý Rolle ta có phương trình f/(x) = 0 có ít nhất hai nghiệm.
Tương tự f//(x) = 0 có ít nhất 1 nghiệm mà f/(x) = n.xn – 1 + p; f//(x) = n(n – 1)xn – 2 Do n N*; n chẵn nên n(n – 1) > 0 và n – 2 chẵn
 f//(x) > 0 xR (điều này trái với kết quả trên)
Vậy (3) không thể có quá hai nghiệm thực phân biệt (đpcm).

Thí dụ 190: Chứng minh rằng nếu a, b, c, d đôi một khác nhau thì phương trình
(x – a)(x – b)(x – c) + (x – d)(x – b)(x – c) + (x – a)(x – d)(x – c) + (x – a)(x – b) .(x – d) = 0 (4) luôn có ba nghiệm phân biệt
Lời giải:
Đặt f(x) = VT(4) và F(x) = (x – a)(x – b)(x – c)(x – d) xác định liên tục trên R, do F(a) = F(b) = F(c) = F(d) = 0 nên phương trình F(x) = 0 có 4 nghiệm phân biệt. Theo hệ quả định lý Rolle có F/(x) = 0 có ít nhất 3 nghiệm phân biệt mà
F/(x) = f(x)  f(x) có ít nhất 3 nghiệm phân biệt.
Nhưng f(x) là đa thức bậc 3 nên nó có nhiều nhất 3 nghiệm phân biệt
Vậy (4) có đúng 3 nghiệm phân biệt (đpcm).

Thí dụ 191: Chứng minh rằng với a, b, cR phương trình
acos3x + bcos2x + ccosx + sinx = 0 (5) luôn có nghiệm x  (*)
Lời giải:
Đặt ta có F(x) xác định và liên tục trên ; khả vi mà F(0) = F(2π) = 0 a;b;c R nên theo định lý Rolle phương trình F/(x) = 0 luôn có nghiệm x (0;2π) mà F/(x) = VT(5)
Vậy (5) luôn có nghiệm x .

Thí dụ 192: Chứng minh rằng với a, b, c, d, e R phương trình sau luôn có nghiệm F(x) = acos6 + bcos5 + csin4x + dcos3x + esinx = 0
Lời giải:
Đặt
Ta có F(x) xác định và liên tục trên ; khả vi mà F(0) = F(2π) = 0 a, b, c, d, e R nên theo định lý Rolle phương trình F/(x) = 0 luôn có ít nhất một nghiệm x (0;2π) Mà F/(x) = f(x)
Vậy phương trình đã cho luôn có nghiệm.

Thí dụ 193: Cho f(x) = anxn + an-1xn-1 + …. + a1x + ao. Chứng minh rằng nếu
nN* sao cho thì phương trình
f(x) = 0 luôn có nghiệm x (0;1).
Lời giải:
Đặt
Ta có F(x) xác định và liên tục trên ; khả vi và có F(0) = F(1) = 0 nên theo định lý Rolle phương trình F/(x) = 0 luôn có ít nhất một nghiệm x (0;1)
Mà F/(x) = an x n + m – 1 + an - 1 x n + m – 2 + … + a1 x m + aox m – 1
= x m – 1 (an x n + a n – 1 x n - 1 +….+a1x + ao)
 Nếu gọi xo (0; 1) là một nnghiệm của phương trình F/(x) = 0 thì:
xm-1(anxn + an-1xn-1 +….+ a1x + ao) = 0
 f(xo) = 0 (xo (0;1))
Vậy phương trình f(x) = 0 luôn có nghiệm (x (0; 1)).

Thí dụ 194: Giải bất phương trình (1)
Lời giải:
Điều kiện:


Xét phương trình g(x) = 2x – 3x + 1 = 0, có g(x) xác định liên tục trên R và
21– 3.1 + 1 = 0; 23 – 3.2 + 1 = 0
Nên phương trình g(x) = 0 có ít nhất hai nghiệm x = 1; x = 3.
Giả sử phương trình g(x)=0 có nhiều hơn hai nghiệm, khi đó theo định lý Rolle phương trình g/(x) = 0 luôn có ít nhất hai nghiệm và phương trình g//(x) = 0 có ít nhất 1 nghiệm mà g/(x) = 2xln2 – 3; g//(x) = 2x(ln2)2 x R (điều này trái với giả thiết trên)
Do đó g(x) = 0  x = 0; x = 3  g(x) ≠0  x ≠ 0; x ≠ 3
Vậy (*) 
Với điều kiện đó xét phương trình:
f(x) = 0
Phương trình f(x) = 0 có nghiệm duy nhất x = 0.
Do f(x) xác định liên tục trên (*1) và
Nên ta có bảng xét dấu f(x) trên (*1) như sau:
BẢNG XÉT DẤU






Thí dụ 198: Chứng minh rằng với ak; bkR; an + bn ≠ 0 phương trình luôn có nghiệm
Lời giải:
Đặt F(x) = thì F(x) xác định liên tục trên [0; 2π]; khả vi (0; 2π) và F(0) = F(2π) = . Do đó theo định lý Rolle thì phương trình F/(x) = 0 luôn có ít nhất một nghiệm x (0; 2π) mà F/(x) = VT(1)
Vậy phương trình luôn có ít nhất một nghiệm (đpcm).

Thí dụ 200: Chứng minh rằng với a, b, c đa thức
P(x) = x5 – 2x4 + 2x3 + ax + bx + c có không quá 3 nghiệm
Lời giải:
Giả sử P(x) có nhiều hơn 3 nghiệm thì khi đó theo định lý Rolle phương trình P/(x) = 0 luôn có ít nhất ba nghiệm và phương trình P//(x) = 0 có ít nhất hai nghiệm; phương trình P///(x) = 0 có ít nhất một nghiệm mà
P/(x) = 5x4– 8x3 + 6x2 + 2ax + b; P//(x) = 20x3 – 24x2 + 12x + 2a;
P///(x) = 60x2 – 48x + 12 > 0 (điều này trái với kết quả trên)
Vậy phương trình đã cho có không quá 3 nghiệm (đpcm).



Mình viết topic nhằm giúp các bạn trao đổi thêm về các dạng BPT trong đề thi DH Very Happy
avatar
vucongtinh
Admin
Admin

Tổng số bài gửi : 32
Join date : 06/08/2010
Age : 24
Đến từ : Gầm cầu

Xem lý lịch thành viên http://diendanhighschool.buygoo.net

Về Đầu Trang Go down

hi!

Bài gửi  vucongtinh on 23/8/2010, 4:03 pm

cố gắng!!!
avatar
vucongtinh
Admin
Admin

Tổng số bài gửi : 32
Join date : 06/08/2010
Age : 24
Đến từ : Gầm cầu

Xem lý lịch thành viên http://diendanhighschool.buygoo.net

Về Đầu Trang Go down

Về Đầu Trang

- Similar topics

 
Permissions in this forum:
Bạn không có quyền trả lời bài viết